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Abstract

Sixty-eight samples of wines from Piedmont (Italy) were analysed to determine their content of volatile compounds, using
the solid-phase microextraction (SPME) technique coupled with gas chromatography–mass spectrometry (GC–MS).
Samples were from five groups of wines: Barolo, Barbaresco, Nebbiolo d’Alba, Roero and Langhe Nebbiolo, all produced
from the Nebbiolo grape in the Langhe and Roero areas (province of Cuneo, Piedmont) but differing in vintage (respectively,
3 years, 2 years, 1 year, 8 months and few months) and production zone. Thirty-five analytes were identified; peak area data,
corrected for internal standard, were used for pattern recognition treatments. Principal components analysis, hierarchical
cluster analysis, Kohonen self organising map, stepwise linear discriminant analysis and soft independent modelling of class
analogy were applied to the data, revealing a good separation between the five groups. A main factor, strictly connected to
wine vintage, was identified and found to be related to some analytes.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction As a general rule, it is noteworthy to say that
every classification scheme is a story by itself,

The possibility of recognizing a wine from its because variables used to obtain a good discrimina-
chemical parameters has received great attention in tion in a certain case may not be reliable in a
the last few years [1–3]. Many authors have pro- different scheme. This is due to the complexity and
posed methods to discriminate wines, determining heterogeneity of the wine matrix, which can reflect
different compounds as markers. Classes of parame- different peculiarities of soil, grape or production
ters utilised comprised elements [4–6], organic com- cycle. This is why it is rather difficult to separate
pounds [7–9], stable isotopes [10–12] between variables for general use. Martin et al. [12] proposed
others. Frequently, authors suggested an integrated stable isotopes analysis with NMR.
use of different chemical data [13–16]. A classification study on wines from Piedmont

(Italy) is particularly important because of the great
value of some high-level products of this region,*Corresponding author. Tel.: 139-0131-283809; fax: 139-
among them wines made from the Nebbiolo grape.0131-254410.
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based on 35 samples of Barbaresco, Barolo, Gatti- the proper amount of analyte in ethanol 95% (Merck,
nara and Nebbiolo d‘Alba, utilising variables of Darmstadt, Germany).
different origin to yield a good classification model;
they found that total condensed flavonoids, saturation 2.2. Equipment
(a colour measurement), cis-hex-3-enol and b-hy-
droxyethylbenzene were particularly useful as vari- Analyses were performed with an HP5890 gas
ables to discriminate between the four classes ex- chromatograph with mass spectrometric detection
amined. (HP5972, Agilent Technologies). The GC system

In our work, five classes of samples were consid- was equipped with a 30 m HP-VOC capillary column
ered: Barbaresco, Barolo, Langhe Nebbiolo, Neb- (0.25 mm I.D., 1.5 mm film thickness). The split /
biolo d’Alba and Roero. These wines are produced splitless inlet was equipped with a 2 mm I.D.
in a relatively small area in the province of Cuneo, deactivated glass liner designed for SPME analysis
Piedmont. The main feature of this set of classes is (Supelco, Bellefonte, PA) and an electronic flow
that they differ in their vintage: 3 years for Barolo, 2 control. GC conditions were as follows: inlet at
for Barbaresco, 1 for Nebbiolo d’Alba, 8 months for 2508C; splitless time: 3 min; oven initial tempera-
Roero and few months for Langhe Nebbiolo. This ture: 408C (5 min) then to 2508C at 88C/min; GC–
feature is reflected markedly on the value of these MS transfer line at 2508C; carrier He (Extrapure,
wines and this is why it is useful to develop a 99.9999%) at 1 ml /min. Peak areas were computed
method for their correct attribution. using extracted ion currents at m /z corresponding to

We chose to determine volatile compounds in the most abundant fragment in the mass spectrum of
these samples, because they are probably among the analyte considered.
those responsible for the so-called bouquet, that is
the characteristic fragrance of wine, a feature that 2.3. SPME conditions
could be greatly influenced by vintage. These com-
pounds are expected to be mainly esters, terpenes Wine samples were extracted with headspace-
and lower alcohols. Analyses were performed with SPME, the best SPME technique when target ana-
gas chromatography coupled with mass spectrometry lytes are volatile organic compounds [18]. The
(GC–MS) after collection of analytes by headspace following parameters were optimised: fiber type
solid-phase microextraction (SPME), a technique (either polydimethylsiloxane, PDMS, or polyacrylate,
developed by Pawliszyn in 1989 [18] which presents PA, from Supelco, Bellefonte, PA), contact time
many advantages: speed, ease of use, and selectivity between fiber and headspace, salt addition (to in-
towards different classes of compounds. Some works crease volatile fraction of analytes via salting-out
dealing with wine characterisation by SPME coupled effect), sample temperature, sample volume and
with GC–MS and GC–FID are present in the stirring. Optimal conditions of extraction were ob-
literature [19–21]. However, none deal with the tained using the following procedure: 20.0 ml of
varieties of wine considered in this work. wine were transferred to a 25-ml vial (headspace

3volume was 5 cm ), with 2 g of Na SO added and2 4

10 ml of an ethanolic solution (3000 mg/ l) of 4-
2. Conditions chloro-2-methylphenol as internal standard (1.5 mg/ l

concentration in the sample). The vial was sealed and
2.1. Chemicals headspace extraction was performed for 20 min at

258C with a 100-mm PDMS fiber, keeping the
All reagents were of analytical grade or better. sample under continuous stirring. The fiber was then

Volatile organic compounds, as well as the internal transferred into the GC–MS inlet. The utilisation of
standard 4-chloro-2-methylphenol, were purchased the PA fiber resulted in moderately better recoveries
from Sigma–Aldrich (St Louis, MO) and used as for low molecular mass alcohols, but definitely
received. poorer recoveries for esters and other low polarity

Standard solutions were prepared by dilution of compounds. Temperatures higher than 258C resulted
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in lower recoveries, due to increased partition of neuron is corrected. Similarly at the beginning the
volatile analytes to the headspace. We did not check learning rate, i.e. the amount of correction introduced
recoveries at lower temperatures. is larger than in the last cycles. The final result is a

map, the first layer, where the most similar samples
2.4. Statistical methods are in the same cell or next to one another. The

weights give an insight into the reason for the
2.4.1. Principal components analysis (PCA) clustering of the objects. So the analysis of the first

In this well-known method [22,23], the principal layer provides information on the similarity of the
components (PCs), i.e. new variables obtained as samples while the analysis of the weights provides
linear combinations of the original ones, orthogonal information on the reason for their similarity.
to each other, are calculated in such a way as to keep
most of the information present in the original data 2.4.4. Soft independent modelling of class analogy
set in the least possible number of new variables. (SIMCA)
The PCs can be plotted for visual inspections of the In this classification method [29,30] each class is
data to point out patterns hidden in the dataset. described by an independent principal component

analysis model. New samples are classified on the
2.4.2. Hierarchical cluster analysis (HCA) basis of their fit with the different PCA models. The

This is another unsupervised method [24,25], in optimal number of PCs for each model is chosen
which samples are considered as lying in a p-dimen- independently since the classes may exhibit different
sional hyperspace (with p the number of variables) shapes and structures. For new samples the residuals
and distances between samples are calculated, join- and scores with respect to each PCA model are
ing objects with an agglomerative procedure until all calculated. The residuals provide information on the
samples are joined to form a single cluster. ability of each model to describe the new data, a sort

of object-to-model distance while the scores can be
2.4.3. Kohonen self organising map (Kohonen combined in a measure of the distance between the
SOM) object and the model centre.

The Kohonen artificial neural network (K-ANN)
or self organising map (SOM) [26–28] is based on a 2.4.5. Stepwise linear discriminant analysis
single layer of neurons, usually arranged in a square (SLDA)
box, with its responses on the top of the box. Below In this supervised pattern recognition method
each cell of the top layer there is a column of cells, [31,32], a classification model is built applying a
one for each descriptor, which represent the weight forward step-wise variable selection algorithm. The
of the network. The top layer is characterised by the most discriminating variables are selected on the
number of cells on each edge. During the learning of basis of a Fisher’s test.
the network, each sample is presented to the net-
work. For each sample, the distance between the
sample and every column of weights is calculated. 3. Result and discussion
The column with the minimum distance is consid-
ered the winning neuron. The weights of this neuron The SPME–GC–MS method developed was found
are modified so that at the following cycle the to be fully suitable for the analysis of volatile
distance of the same sample from the winning compounds in wine, due to its selectivity and sen-
neuron shall be smaller. A similar correction is sitivity. Detection limits are in the ng/ l range;
applied to the neurons in the neighbourhood of the repeatability as calculated on five successive ex-
winner. This correction decreases with the distance. traction cycles, is about 5% for all analytes consid-
Usually the distance at which the correction takes ered.
place decreases during the learning phase. At the Fig. 1 shows a typical chromatogram (total ion
beginning the entire network is affected by every current) obtained from headspace-SPME–GC–MS
correction while in the last cycles only the winner analysis of a wine sample. Careful inspection of the
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Fig. 1. Typical chromatogram (total ion current) obtained from headspace-SPME–GC–MS analysis of a ‘‘Barolo’’ sample. Identified
analytes are listed in Table 1.

chromatogram allowed the assignment of a mass in elution order) were unambiguously identified
spectrum clearly different from background for more either by library search (match quality better than
than 50 peaks. Thirty-five of them (listed in Table 1 90%) or by injection of authentic standards. These

Table 1
Compounds detected in wine samples

No. Analyte t No. Analyte tr r

1 Ethyl acetate 6.1 E 19 Ethyl 2-hexenoate 18.4 E
2 2-Methyl-1-propanol 6.5 A 20 Ethyl heptanoate 19.4 E
3 Ethyl propanoate 9.5 E 21 Methyl octanoate 19.9 E
4 3-Methyl-1-butanol 10.2 A 22 2-Phenylethanol 20.3 A
5 2-Methyl-1-butanol 10.3 A 23 4-Ethylphenol 21.1 A
6 Ethyl 2-methylpropanoate 10.9 E 24 Diethyl succinate 21.2 E
7 2-Methylpropyl acetate 11.4 E 25 Ethyl octanoate 21.5 E
8 2,3-Butanediol 11.7 A 26 3-Methyl-1-butyl hexanoate 22.5 E
9 Ethyl butanoate 12.2 E 27 2-Methyl-1-butyl hexanoate 22.6 E

10 Ethyl lactate 12.7 E 28 4-Ethylphenyl acetate 22.8 E
11 Ethyl 2-methylbutanoate 13.6 E 29 2-Phenylethyl acetate 23.0 E
12 Ethyl 3-methylbutanoate 13.7 E 30 Ethyl nonanoate 23.3 E
13 Hexanol 14.1 A 31 a-Ionone 23.7 T
14 3-Methyl-1-butyl acetate 14.3 E 32 Methyl decanoate 23.8 E
15 2-Methyl-1-butyl acetate 14.4 E 33 Ethyl 9-decenoate 25.0 E
16 Ethyl hexanoate 17.3 E 34 Ethyl decanoate 25.1 E
17 Hexyl acetate 17.6 E 35 Ethyl dodecanoate 28.3 E
18 Cymene 18.1 T

E, ester; A, alcohol; T, terpene.
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Table 2 HCA and SLDA, autoscaled with respect to each
Variance explained by the first PCs class for SIMCA while they were range scaled for
PC Eigenvalue Explained Cumulative SOM. Due to the homogeneity of our data and to the

var. (%) var. expl. (%) use of an internal standard with all the samples, it
1 9.17 26.2 26.2 was not necessary to perform quantitative determi-
2 6.20 17.7 43.9 nation of the analytes.
3 4.14 11.8 55.8
4 1.78 5.1 60.9

3.2. Principal components analysis (PCA)5 1.70 4.9 65.8

Applied to our data set, PCA revealed that the first
three principal components explain 55.8% of total

analytes were utilised for statistical treatments, thus variance (Table 2). A plot of the scores of PC1
obtaining a data matrix of 68 samples described by versus PC2, i.e. the projections of the samples along
35 variables. the directions identified by the first two PCs, is

reported in Fig. 2. It is apparent that samples are
3.1. Chemometrical procedures grouped in a way similar to our classification.

Moreover, an interesting feature can be pointed out:
We used five pattern recognition methods: three such groups are arranged along the direction of PC1,

unsupervised, that is principal components analysis in a way that reflects their vintage order (more
(PCA), hierarchical cluster analysis (HCA) and precisely, in reverse vintage order), that is, samples
Kohonen self organising map (SOM or K-ANN), of older wines (Barolo, Barbaresco) have lower
and two supervised, that is stepwise linear discrimin- scores and samples of younger wines (Nebbiolo
ant analysis (SLDA) and soft independent modelling d’Alba, Roero, Langhe Nebbiolo) have higher scores
of class analogy (SIMCA). All statistical treatments on PC1. It can be concluded that the first principal
were performed on peak area data, normalised by component describes a feature strictly related to
internal standard. The data were autoscaled for PCA, vintage. The loadings, i.e. the coefficients that define

Fig. 2. Plot of Principal Component 1 versus Principal Component 2 scores. s, Barbaresco; ^, Barolo; x, Langhe Nebbiolo; h, Nebbiolo
d’Alba; d, Roero.
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the weight of each original variable in the PCs, can contain information on the difference between the
then be investigated to understand which chemical five wines. Barbaresco is at the leftmost end of this
compounds are responsible for the ranking of sam- variable, moving towards the right direction we have
ples on the basis of the vintage on the first PC. A Barolo and Roero, then Langhe Nebbiolo and Neb-
comparison of scores and loadings for PC1 allows biolo d’Alba. The most important variables in this
the identification of the compounds having higher case are 2-methylpropanol, 3-methylbutanol, 2-
influence on this feature (Table 3); analytes with methylpropyl acetate and methyl octanoate.
highly positive loadings on PC1 should be regarded No further indication can be drawn from the other
as compounds whose concentration decreases with principal components.
vintage, while analytes with highly negative loadings
tend to increase. The most important compounds are

3.3. Hierarchical cluster analysis (HCA)
all esters: ethyl 2-methylpropanoate, 3-methylbutyl
hexanoate, ethyl decanoate, diethyl succinate, ethyl

To perform cluster analysis we used Ward’s
3-methylbutanoate and ethyl octanoate. This assump-

method of agglomeration and Euclidean distances to
tion is confirmed by literature, if we consider the

evaluate similarity between samples. Applying HCA
following:

to our data set, we obtained the dendrogram reported
(1) Esters formed by ethanol reaction with the

in Fig. 3. Three main clusters can be identified: from
major wine acids (tartaric, malic, lactic, succinic,

top to bottom, a group containing nearly all Roero
etc.), also called acid esters, tend to increase with

and most of Langhe Nebbiolo samples, a second
vintage, though esterification rates under wine con-

group with nearly all samples of Nebbiolo d’Alba
ditions are very low, with lactic and succinic acids

and samples from other groups, and a final group
having the highest rates and tartaric acid the lowest

with nearly all Barolo and Barbaresco. Again, sam-
[33].

ples seem to cluster on the basis of vintage; this
(2) Esters formed through fermentation processes,

confirms the indications from PCA.
or neutral esters, tend to decrease by hydrolysis

By using a transposed data matrix, it is possible to
because, in young wines, they are produced in

cluster variables, to see whether correlation occurs.
concentrations higher than could be maintained in

Applying HCA to the variables, we found a pattern
equilibrium conditions [33]. Non-ethyl esters, ethyl

confirming the PCA results: variables previously
hexanoate, octanoate and decanoate behave this way.

described as positively correlated to PC1 tend to
Also the second principal component seems to

cluster together, far from those negatively correlated
to PC1. This suggests that the data set can be
simplified by eliminating redundant information; aTable 3

Analytes with higher loadings on PC1, either positive or negative few variables could be determined to point out
differences between groups. This affirmation shouldCompounds Loadings on PC1
be confirmed by supervised methods.

Increasing with vintage
Ethyl acetate 20.77
Ethyl 2-methylpropanoate 20.85 3.4. Kohonen self organising map (Kohonen SOM)
Ethyl lactate 20.74
Ethyl 2-methylbutanoate 20.70

In the present case, several architectures of theEthyl 3-methylbutanoate 20.82
Ethyl succinate 20.83 network were investigated. The one providing the
a-Ionone 20.75 best results was a 737 network. A total of 500

iterations were used, with the learning rate decreas-
Decreasing with vintage

ing linearly from 0.5 to 0.01. In the same time theEthyl hexanoate 0.74
range of the weights correction decreased from 7 toEthyl octanoate 0.80

Ethyl decanoate 0.83 1. The final result is reported in Fig. 4 and Table 4.
Hexyl acetate 0.78 The result shows a rather good separation of the
3-Methylbutyl hexanoate 0.84 different wines. Barbaresco and Barolo samples are
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Fig. 4. Kohonen network first layer.

ionone (high for Barbaresco and Barolo, low for
Roero, intermediate for the others).

(2) 2-Methylpropanol, 2-methylbutanol, 3-methyl-
butanol, 2-methylpropyl acetate, ethyl propanoate,
1-hexanol, 2-methylbutyl acetate, phenylethanol, 2-
methylbutyl hexanoate (high for Barbaresco, Barolo
and Roero, low for Langhe Nebbiolo and Nebbiolo
d’Alba).

(3) Ethyl butanoate, ethyl hexanoate, hexyl ace-
tate, ethyl 2-esenoate, methyl octanoate, ethylphenol,
ethyl octanoate, 3-methylbutyl hexanoate, 2-ethyl-
phenyl acetate, methyl decanoate, ethyl 9-decenoate,
ethyl decanoate, ethyl dodecanoate (high for Roero
and Langhe Nebbiolo, low for Barbaresco, Barolo
and Nebbiolo d’Alba).

The power of the Kohonen network to group the
objects shows its efficiency in this example.

3.5. Soft independent modelling of class analogy
Fig. 3. Dendrogram of cases obtained with hierarchical cluster (SIMCA)analysis on the 68 samples.

In the present case, a PCA model with two PCs
next to each other, as expected on the basis of the for each class was selected by cross-validation of the
previous results. The analysis of the surface plots classification model. The final Non Error Rate
showing the weights (Fig. 5) confirms that these two (NER%) is 88.24 while the leave-one-out (LOO)
wines are characterised by a larger amount of the NER% is 66.18. No better LOO NER% can be
acid esters. The characterisation of the other wines is obtained by increasing the number of PCs in any
also interesting, which is based on several chemical class model. The corresponding classification ma-
variables. There are some typical behaviours of the trices (fitting and cross-validated) are reported in
surfaces representing the weights: Table 5. The main problems of misclassification in

(1) Ethyl acetate, ethyl 2-methylpropanoate, ethyl the cross-validated models take place between Lan-
lactate, ethyl 2-methylbutanoate, ethyl 3-methyl- ghe Nebbiolo assigned to Roero, Nebbiolo d’Alba to
butanoate, ethyl heptanoate, diethyl succinate, a- Roero, Barolo to Barbaresco and Barbaresco to
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Table 4
Sample location in the first layer of the self organising Kohonen map

Sample X-Cell Y-Cell Sample X-Cell Y-Cell Sample X-Cell Y-Cell

BB-01 2 7 NA-24 5 6 BR-47 1 4
BB-02 3 7 NA-25 1 1 BR-48 1 5
BB-03 1 1 NA-26 1 1 BR-49 1 6
BB-04 3 4 LN-27 4 3 BR-50 1 4
BB-05 3 3 LN-28 5 2 BR-51 2 5
BB-06 3 4 LN-29 6 2 BR-52 3 6
BB-07 3 5 LN-30 5 5 BR-53 2 3
BB-08 4 4 LN-31 3 2 BR-54 1 6
BB-09 1 1 LN-32 5 5 BR-55 2 5
BB-10 1 7 LN-33 5 1 RO-56 7 1
BB-11 3 7 LN-34 5 2 RO-57 6 1
BB-12 5 7 LN-35 3 1 RO-58 7 3
BB-13 2 5 LN-36 5 6 RO-59 7 7
BB-14 3 6 LN-37 4 1 RO-60 7 5
BB-15 3 4 LN-38 5 7 RO-61 7 4
NA-16 4 2 LN-39 1 2 RO-62 6 1
NA-17 3 2 LN-40 5 3 RO-63 6 4
NA18 2 2 LN-41 2 1 RO-64 7 7
NA-19 4 1 BR-42 1 7 RO-65 4 1
NA-20 2 1 BR-43 4 5 RO-66 4 7
NA-21 1 2 BR-44 1 5 RO-67 7 2
NA-22 1 1 BR-45 1 4 RO-68 6 4
NA-23 1 3 BR-46 1 7

BB, Barbaresco; BR, Barolo; LN, Langhe Nebbiolo; NA, Nebbiolo d’Alba; RO, Roero.

Barolo. These misclassifications do not confound 2.0 and F 54.0. The results of the calculationsto-enter

expensive wines with the cheaper ones. The sen- are summarised in Table 6. The overall Non Error
sitivity, i.e. the non-error rate per class is satisfactory Rate (NER%) for the first model is 88.2, the Leave-
for all classes except Langhe Nebbiolo, which is One-Out cross-validated one is 72.1. From the
heavily misclassified as Roero. The cross-validated classification matrix, it can be noted that most of the
result is very poor for Langhe Nebbiolo, but also errors correspond to assignments of Nebbiolo d’Alba
Nebbiolo d’Alba shows a low sensitivity, again samples to Barbaresco and Barbaresco samples to
confounded with Roero. As a consequence, Roero is Nebbiolo d’Alba. The classification of a younger
characterised by a low specificity, i.e. purity of the wine in the classes of Barolo and Barbaresco takes
class both in fitting and cross-validation. In cross- place only once (in the class of Barbaresco). This is
validation also Nebbiolo d’Alba, Barolo and Bar- a good result, since Nebbiolo d’Alba and Barbaresco
baresco have lower specificities, the latter because of are much more expensive wines and it appears easy
the exchange of samples between the two classes. to find possible adulteration. The linear classification

All variables exhibit a modelling power greater model which provides these results contains 11
than 80%. The variables with the largest discriminat- original variables (ethyl 2-methylpropanoate, 2-
ing power are: ethyl 9-decenoate, ethyl 2-methyl- methylbutanol, ethyl lactate, ethyl 2-esenoate, ethyl
propanoate, 3-ethylphenyl acetate, 3-methylbutyl decanoate, 3-methylbutyl acetate, ethyl 3-methyl-
acetate, ethyl 2-esenoate, ethyl propanoate, 2- butanoate, 2,3-butanediol, 2-methylbutyl acetate, 2-
methylbutyl acetate. methylpropyl acetate, hexyl acetate).

A simpler discriminant model is obtained using
3.6. Stepwise linear discriminant analysis (SLDA) the greater value of the F . In this calculationto-enter

only the most discriminant variables are maintained.
Two calculations were performed with F 5 The best model in this case contains only fiveto-enter
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Fig. 5. Surface plots of Kohonen weights.
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Fig. 5. (continued)
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Fig. 5. (continued)
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Fig. 5. (continued)



943 (2001) 123–137 135E. Marengo et al. / J. Chromatogr. A

Fig. 5. (continued)

original variables, which, with the exception of ethyl ethyl decanoate, ethyl 3-methylbutanoate, hexyl ace-
2-esenoate, are the same as those most relevant in tate). This confirms the ability of PCA to identify the
PC1 (ethyl 2-methylpropanoate, ethyl 2-esenoate, systematic information connected with the differ-

ences between the wine classes. Of course the
quality of the latter discriminant model is slightly

Table 5 worse than the previous one. The overall NER% is
Fitting and cross-validated SIMCA classification matrices

77.9, the Leave-One-Out cross-validated one is 73.5.
BB NA LN BR RO Sens. The cross-validated NER% of the reduced model is

Fitting slightly better than the ones for the expanded classifi-
BB 13 1 0 1 0 86.7 cation model, which means that the predictive ability
NA 0 10 0 0 1 90.9 of the former one is better. Then a slight overfitting
LN 0 1 10 0 4 66.7

must be present in the more complex model. AgainBR 0 0 0 14 0 100
most errors correspond to misclassifications betweenRO 0 0 0 0 13 100

Spec. 100 83.3 100 93.3 72.2 Barolo and Barbaresco samples, reflected in their
values of sensitivity and specificity.

Cross-validated The reduced model shows satisfactory values of
BB 12 1 0 2 0 80

sensitivity and specificity for all classes. The differ-NA 1 6 0 0 4 54.4
ence between the fitting and the cross-validatedLN 0 2 4 0 9 26.7

BR 3 0 0 11 0 78.5 results is not very large, which demonstrates that
RO 1 0 0 0 12 92.3 only true information has been retained.
Spec. 70.6 66.7 100 84.6 48 The SLDA model with five variables performs
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Table 6
Fitting and cross-validated SLDA classification matrices (F 52.0 and 4.0)to enter

Fitting Cross-validated

BB NA LN BR RO Sens. BB NA LN BR RO Sens.

F52.0
BB 14 1 0 1 0 93.3 11 2 0 2 0 73.3
NA 1 9 1 0 0 81.8 2 7 1 0 1 63.6
LN 0 1 14 0 0 93.3 0 1 13 0 1 86.7
BR 2 0 0 12 0 85.7 4 1 0 9 0 64.3
RO 0 1 1 0 11 84.6 0 1 3 0 9 69.2
Spec. 82.3 75 87.5 92.3 100 64.7 58.3 76.5 81.8 81.8

F54.0
BB 10 1 2 2 0 66.7 10 1 2 2 0 66.7
NA 1 9 1 0 0 81.8 1 7 1 1 1 63.6
LN 0 1 14 0 0 93.3 0 1 14 0 0 93.3
BR 3 1 0 10 0 71.4 4 1 0 9 0 64.3
RO 1 0 2 0 10 76.9 1 0 2 0 10 76.9
Spec. 66.7 75 73.7 83.3 100 62.5 70 73.7 75 90.9

better than the SIMCA model and should be pre- (3) SLDA seems to be the best classification
method and the interpretability of its models im-ferred for classification purposes.
proves the results of the statistical analysis.
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